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Abstract. Due to the sinusoidal modulation of the dielectric properties along the helical axis, cholesteric
liquid crystals exhibit a photonic stop band for circularly polarized light, which strongly affects the emission
of fluorescent guest molecules. In this paper, we discuss the resulting changes in the emission spectrum.
In an analytical treatment, we first derive the photonic densities of states of the two normal light modes
for propagation parallel to the helical axis, taking into account multiple reflections due to the finite film
thickness. Then we discuss the influence of the degree of order of the dye’s transition dipole moment on
the emission characteristics. Finally, we present experimental results, which show excellent quantitative
agreement with our theoretical description.

PACS. 42.70.Qs Photonic bandgap materials – 61.30.-v Liquid crystals

1 Introduction

Dielectric materials with a periodic modulation of the re-
fractive index exhibit photonic band gaps, i.e., in certain
frequency ranges the propagation of light is forbidden.
Such optical media are known as photonic crystals. The
presence of a photonic band gap affects the emission spec-
trum of fluorescent guest molecules: inside the gap, fluo-
rescence is suppressed, near the band edges it is enhanced
due to the high photonic density of states (DOS); at the
band edges, the group velocity approaches zero, and the
resulting long dwell times of emitted photons strongly sup-
port stimulated emission. Hence, photonic crystals may be
used as mirrorless resonators for laser emission.

Cholesteric liquid crystals (CLCs) provide a 1D refrac-
tive index modulation: a CLC is a fluid medium consisting
of rodlike molecules which arrange themselves in a helical
structure [1]. In planes perpendicular to the helical axis,
the molecules show a nematic-like order. The preferred
orientation of the molecules defines the local optical axis.
This direction can be characterized by a unit vector n̂,
the so-called director. Along the helical axis, the director
is continuously rotated, resulting in a twisted birefringent
medium. For light propagation along the helical axis, the
two normal light modes are elliptically polarized waves
with opposite sense of rotation [2]. In a certain frequency
range, a CLC shows a stop band for that mode whose po-
larization has the same sense of rotation as the cholesteric
helix. Thus, CLCs may be regarded as self-assembling 1D
photonic crystals.
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Indeed it has been repeatedly demonstrated, that dye-
doped low molar mass CLCs [3–6] as well as cholesteric
polymer networks [7,8] act as photonic band edge lasers.
As a prerequisite for a thorough understanding of the ob-
served lasing phenomena, one has to understand the ef-
fect of the cholesteric medium on the spontaneous emis-
sion of the dye molecules. On transition from the isotropic
to the cholesteric phase, there are strong changes in the
fluorescence spectrum: reduced emission inside the stop
band, enhanced emission at the band edges, and (at least
in well ordered films) the occurrence of Fabry-Perot-like
oscillations [8]. Besides, one observes a dominant circu-
larly polarized emission component near the stop band.
There still is a lack of quantitative understanding of the
observed features. Experimental studies [9–15] so far have
concentrated on the polarization of the emitted light, and
theoretical work [9,11] in this field has focused on the
polarization of emission at short wavelengths, far away
from the stop band. The observed changes in emission
intensity near the stop band have been qualitatively dis-
cussed by Voigt et al. [15], stressing the important role
of the DOS for understanding the spectra. In this paper,
we discuss the drastic changes in fluorescence intensity
and polarization in the region of the stop band, and de-
rive a quantitative theoretical description of the observed
phenomena. We will show, that the observed changes in
emission can be explained, if one takes into account the
drastic changes in the DOS in this wavelength region.
There is a close relation to the work of Tocci et al. [16],
who studied spontaneous emission in a periodic 1D semi-
conductor heterostructure, and we will adopt to some
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degree their approach [16,17] to calculate the DOS. How-
ever, we have to face some additional complications due
to the optical anisotropy of the cholesteric medium and
the anisotropic orientational distribution of the fluores-
cent guest molecules.

In an isotropic medium, the rate w of emission of a
photon with certain polarization and certain wave vector k
by an excited molecule is described by Fermi’s Golden
Rule, stating

wiso ∼ ρiso |〈f |µ · ak|i〉|2 , (1)

where µ is the dipole moment operator, ak is the elec-
tromagnetic vector potential, i and f indicate the initial
and final state, and ρiso is the DOS. In isotropic media,
the DOS is independent of the polarization and the direc-
tion. The states i and f usually are not known in detail,
so we characterize the molecular transition by a transi-
tion dipole moment d, its coupling to the electric field E
depending on the projection E∗ · d:

wiso ∼ ρiso|E∗ · d|2. (2)

On transition from the isotropic to the cholesteric phase,
the medium becomes birefringent, and the emission de-
pends on the orientation of the transition dipole moment d
with respect to the cholesteric axis and the local director.
In the following, we restrict our considerations on emis-
sion parallel to the cholesteric axis. The DOS now depends
on the polarization. We assume that the excited molecule
has to choose one of the two normal modes E1, E2 for
emission, with respective emission probabilities

wi ∼ ρi|E∗
i · d|2, (3)

where ρi is the DOS associated to the normal mode Ei.
The fluorescent molecules adopt to some degree the local
nematic order of the cholesteric solvent, which results in
an anisotropic orientational distribution of the transition
dipole moment. We are interested in the change in emis-
sion of a CLC film with thickness D on transition from
the isotropic to the cholesteric phase. Therefore we define
the relative fluorescence intensities

Ii =

∫ D

0 〈wi〉clcdz∫D

0
〈wiso〉isodz

=
ρi

ρiso

∫ D

0
〈|E∗

i · d̂|2〉clcdz∫D

0
〈|E∗

iso · d̂|2〉isodz
, (4)

where there brackets 〈. . . 〉iso and 〈. . . 〉clc denote the av-
erage over the orientational distribution of the transition
dipole moment in the isotropic and the cholesteric phase,
respectively. The normal mode Eiso represents a plane
wave with arbitrarily chosen polarization. The relative in-
tensities Ii no longer depend on the absolute value of the
transition dipole moment d, only on its direction. There-
fore, instead of d we use in equation (4) the unit vector
d̂ = d/|d| (throughout this paper, unit vectors will be in-
dicated by a caret ‘ˆ ’). In the following, we assume the

fluorescent molecules to be homogeneously distributed in
the film; then, the spatial dependence of the normal modes
Ei no longer is important. The normal modes being nor-
malized [17], we then get a simplified expression for the
relative intensities:

Ii =
ρi

ρiso

〈|di|2〉clc
〈|diso|2〉iso , (5)

with

di = ê∗
i · d̂ (6)

and

diso = p̂∗ · d̂, (7)

where ê1 and ê2 denote the polarizations of the two nor-
mal modes, and p̂ is an arbitrarily chosen polarization.

For the calculation of the DOS and the factors di, and
as well for discussing the polarization of the emitted light,
it will proof useful to use the results of de Vries’ classical
treatment of light propagation in CLCs, which provides
exact results for the polarizations, dispersion relations,
and reflection and transmission coefficients of the two nor-
mal modes for light propagation parallel to the cholesteric
axis. In Section 2, we give a summary of the main results
of the de Vries theory. In Section 3, we derive analytical
expressions for the densities of states ρi of the two normal
light modes propagating parallel to the cholesteric axis.
In Section 4, we calculate the factors 〈|di|2〉, and we dis-
cuss the change in emission intensity on transition from
the isotropic to the cholesteric phase in terms of the DOS
and an order parameter describing the degree of nematic
alignment of the dye’s transition dipole moment. In Sec-
tion 5, we discuss the polarization of the emitted light.
In Section 6, we shortly discuss the emission of a nematic
film. In Section 7, we discuss limitations of our theory for
small emission wavelengths. In Section 8, we give a de-
scription of our experimental setup and the investigated
samples. Finally, in Section 9 we present our experimental
results, which show excellent quantitative agreement with
our theoretical predictions.

2 Main results of the de Vries theory

In this section, we summarize the main results of de Vries’
theory of CLC optics. We consider light propagation par-
allel to the helical axis of a CLC with pitch p. The bire-
fringence of the quasi-nematic planes is characterized by
their refractive indices no and ne. Right- and left-handed
helical structures are represented by positive and negative
values of p, respectively. It will proof useful to introduce
the mean refractive index of the nematic planes,

n̄ =
√

(n2
o + n2

e)/2, (8)

the parameter

α =
n2

e − n2
o

2n̄2
(9)
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Fig. 1. Laboratory frame {�̂, �̂, �̂} and rotating frame

{�̂, �̂, �̂}.

describing the relative dielectric anisotropy, and the re-
duced wavelength

λ′ = λ/(n̄p), (10)

where λ is the wavelength in vacuo. Due to the sign con-
vention introduced for p, negative and positive λ′ values
correspond to left- and right-handed helices, respectively.
To describe the rotating director n̂, we start with a right-
handed laboratory frame {x̂, ŷ, ẑ}, with ẑ parallel to the
helical axis:

n̂(z) = − sin(kpz)x̂ + cos(kpz)ŷ, (11)

with

kp = 2π/p (12)

being the wave number of the cholesteric twist. For light
propagation parallel to the cholesteric axis, it is conve-
nient to introduce a rotating coordinate system (Fig. 1)
{ξ̂, η̂, ζ̂}:

ξ̂ = cos(kpz)x̂ + sin(kpz)ŷ,
η̂ = − sin(kpz)x̂ + cos(kpz)ŷ = n̂,

ζ̂ = ẑ. (13)

In the rotating coordinate system, the two polarization
eigenstates represent elliptically polarized waves E1, E2

with opposite handedness,

E1,2 = ê1,2 exp(ik1,2ζ) (14)

(we consider propagation along the positive ζ-direction,
and we omit the explicit time dependence exp(−iωt)).
These basic waves have polarizations

êi =
1√

1 + |fi|2
(
ξ̂ + ifiη̂

)
(15)

with ellipticities f1, f2. The wave numbers k1, k2 can be
written in the form

ki = 2π
m′

i

λ′p
· (16)
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Fig. 2. ‘Refractive indices’ m′
i (top) and ellipticities fi (bot-

tom) for the basic waves �1, �2 in a CLC with anisotropy
parameter α = 0.1 . The grey area marks the stop band.

The reduced ‘refractive indices’ m′
1,2 are roots of

m′2
1,2 = 1 + λ′2 ∓

√
4λ′2 + α2. (17)

For |λ′| > √
1 + α, the negative root of m′2

1 has to be
used, resulting in a negative wave number k1 (Eq. (16)) in
the rotating coordinate system. m′

1 and m′
2 are plotted in

Figure 2 as functions of the reduced wavelength, assuming
α = 0.1. For

∣∣λ′2 − 1
∣∣ < α, m′2

1 is negative and thus m′
1

is imaginary, resulting in an imaginary wave number k1:
here, the wave E1 represents an evanescent wave. This
wavelength region is the CLC’s stop band. The ellipticities
f1,2 of the polarization eigenstates (Eq. (15)) read

fi =
1 − α−m′2

i − λ′2

2m′
iλ

′ · (18)

They are also shown in Figure 2 (assuming a right-handed
helix). Values fi = 0 and fi = ±∞ represent linear polar-
ized waves with the electric field parallel to the ξ̂ and η̂
direction, respectively. For wavelengths |λ′| � α, the two
basic waves are nearly linearly polarized. For |λ′| � α, E2

shows almost perfect circular polarization. This also holds
for the wave E1 far away from the stop band. However,
in the vicinity of the stop band its polarization changes
drastically, and at the band edges it forms a linearly po-
larized wave – at the long-wavelength edge parallel to the
local director (η̂ direction), at the short-wavelength per-
pendicular to the local director. Inside the stop band, f1
is imaginary, resulting in a linear polarization ê1 of the
evanescent wave E1. One should note a bizarre feature of
the two eigenpolarizations ê1, ê2: in general, they are not
orthogonal (ê∗

1 · ê2 	= 0) [1].
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For the calculation of the DOS and of the polariza-
tion of the fluorescence light outside the film, we will need
the reflection and transmission properties of the glass-
CLC and CLC-glass interfaces. De Vries assumed the sur-
rounding medium to have the refractive index n̄ (Eq. (8)).
This index matching is a good approximation for most
cholesterics sandwiched between glass slides. It is useful
to introduce the quantity

qi = λ′fi +m′
i. (19)

The incident wave Ein
i resulting inside the CLC in the

wave exp(ikiζ)êi is an elliptically polarized wave,

Ein
i (z = 0) =

[
1 + (fi/qi)2

1 + |fi|2
]1/2 1 + qi

2
êiso

i , (20)

with

êiso
i =

1√
1 + (fi/qi)2

(
x̂ + i

fi

qi
ŷ

)
. (21)

At the CLC-glass interface, each normal mode gives rise to
a reflected wave which also only consists of the respective
basic wave [2]; the reflection coefficient ri for the wave Ei

reads

ri = −1 − qi
1 + qi

· (22)

In the surrounding medium, the basic wave Ei results
in an elliptically polarized outgoing wave Eout

i . Assuming
unit intensity of the basic wave at the CLC-glass interface,
the amplitude of the transmitted wave reads

Eout
i =

[
1 + (fi/qi)2

1 + |fi|2
]1/2 2qi

1 + qi
êiso

i (23)

(again we assume a matching of the coordinate systems
{ξ̂, η̂, ζ̂} and {x̂, ŷ, ẑ} at the interface). For |λ′| � α, the
waves Ein

i and Eout
i are almost circularly polarized. The

two polarizations êiso
1 , êiso

2 are orthogonal ((êiso
1 )∗ · êiso

2
= 0).

3 Photonic density of states in a cholesteric
film

The photonic density of states (DOS) ρ may be defined as
the inverse slope of the dispersion relation,

ρ =
∣∣∣∣ d
dω

Re(k)
∣∣∣∣ , (24)

thus counting the number of light modes per unit fre-
quency ω (the DOS being a real quantity, only the real
part of k is relevant). We consider light propagation in a
CLC film parallel to the helical axis. We use reduced wave
numbers

k′i = kip. (25)

In an isotropic medium with refractive index n̄, the DOS is

ρiso = n̄/c, (26)

where c is the speed of light in vacuo. For a birefringent
medium like a CLC, we introduce two densities of states,
ρ1, ρ2, one for each polarization eigenstate separately.
First we consider the DOS ρ(∞)

i in a thick cholesteric slab,
where effects due to multiple reflections at the interfaces
can be neglected. Then for the calculation of the DOS we
have to use the dispersion of the two basic waves E1, E2

(Eq. (14)). It should be noted, that there is no need to
transform the waves E1, E2 (which describe light prop-
agation in the rotating coordinate system {ξ̂, η̂, ζ̂}) back
to the laboratory system {x̂, ŷ, ẑ}: this operation changes
the wave number k1,2 (Eq. (16)) in the {ξ̂, η̂, ζ̂}-system
just by the constant wave number kp of the cholesteric
twist (Eq. (12)), which is cancelled again when taking the
derivative according to equation (24). In the stop band,
the wave number k1 of E1 is imaginary. Thus its DOS
is exactly zero. Now we consider the case of real wave
numbers ki. According to equation (16), ki is given as a
function of the reduced wavelength λ′, explicitly by the
factor 1/λ′, and implicitly by the λ′-dependent factor m′

i.
Thus we calculate the DOS ρ(∞)

i as follows:

ρ
(∞)
i = p−1 dk′i

dλ′
dλ′

dω
· (27)

The derivatives occurring on the right hand side of equa-
tion (27) are listed in the Appendix (Eqs. (A.1) and (A.3)),
as well as all other derivatives of basic optical quantities
needed for our further calculations.

In thin cholesteric films, multiple reflections at the in-
terfaces result in a superposition of waves traveling in the
+ζ̂ and −ζ̂ direction. We consider a film of thickness Np
(N revolutions of the director), with the interfaces located
in the {ξ̂-η̂}-planes at ζ = 0 and ζ = N |p|. We use a re-
duced ζ̂-coordinate z′ = ζ/|p|. To calculate the DOS, we
proceed in a way similar to that of Bendickson et al. [17]:
it is convenient to define an effective wave number k′eff,i

by identifying the product k′eff,iN with the phase differ-
ence of the total field amplitude at the two interfaces of
the film. With the help of the complex amplitude trans-
mission coefficient

Ti = Xi + iYi (28)

for propagation of the basic wave Ei through the CLC
film, we then can formulate the dispersion relation

tan
(
k′eff,iN

)
=
Yi

Xi
· (29)

Taking on both sides the derivative with respect to ω,

sec2(k′eff,iN)
dk′eff,i

dω
=

1
N

Xi(dYi/dω) − Yi(dXi/dω)
X2

i

(30)
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and using the identity

sec2(k′eff,iN) = tan2(k′eff,iN) + 1 = Y 2
i /X

2
i + 1, (31)

one finally obtains the DOS

ρi = p−1
dk′eff,i

dω
=

1
Np

Xi(dYi/dω) − Yi(dXi/dω)
X2

i + Y 2
i

(32)

in terms of the real and imaginary part of the transmis-
sion coefficient Ti. To obtain the transmission coefficient
of the film, we have to calculate the total complex field
amplitude at the rear (z′ = N) of the film. We start with
a wave Ein

i traveling in +ζ̂ direction, which results on
passing the z′ = 0 - interface in the basic wave Ei. The
passage of the interface changes the field amplitude ac-
cording to equation (20). Important for the calculation of
the DOS is only the phase jump of the wave on traversing
the interface, not the change in intensity. Except for E1

inside the stop band, both the incident and transmitted
wave are elliptically polarized waves, and the phase jump
is zero (the prefactor (1 + qi)/2 in Eq. (20) being real).
For E1 at wavelengths inside the stop band, the incoming
elliptically polarized wave generates an evanescent wave.
There is no unique rule to define a phase relation between
these two waves at the interface. To the incident wave at
the location of the interface, and to the evanescent mode
we assign the phases φin

1 = arg(1+q1) (as suggested by the
prefactor appearing in Eq. (20)) and φ1 = 0, respectively.
Thus, the phase jump on traversing the interface is

∆φ1 = arg(1 + q∗1) = arg(1 − q1). (33)

Other definitions of the phases φin
1 and φ1 would result

in an additive wavelength-independent term for the phase
jump, which has no effect on the calculation of the DOS.
Therefore, as transmission coefficient of the incident wave
at the z′ = 0-interface we use

ti = 1 − qi. (34)

On traversing the film once, the wave accumulates a phase
factor exp(iNk′i). On reflection at the CLC-glass inter-
face, the wave is altered by the reflection coefficient ri
(Eq. (22)). The sum of all the resulting back- and forthre-
flected waves results in a geometric series for the ampli-
tude at the z′ = N -interface. The series can be reduced to

Ti = ti(1 + ri)
exp(ik′iN)

1 − r2i exp(i2k′iN)
· (35)

To calculate the DOS according to equation (32), the
transmission coefficient Ti has to be split in its real (Xi)
and imaginary (Yi) part. It should be noted, that com-
mon real prefactors of Xi and Yi cancel themselves in the
calculation of the DOS, and therefore may be omitted.
The transmission coefficient Ti is a function of the pa-
rameters ti, ri, and k′i, which themselves are given in the
framework of the de Vries theory as functions of the re-
duced wavelength λ′. Thus the derivatives of Xi and Yi

appearing in the DOS (Eq. (32)) are conveniently written
in the form

dXi

dω
=

dXi

dλ′
dλ′

dω
and

dYi

dω
=

dYi

dλ′
dλ′

dω
· (36)

For splitting Ti in its real and imaginary part, we have to
consider two cases: (1) for the basic wave E1 outside the
stop band, and for the basic wave E2 at all wavelengths,
ti, ri and ki are real; (2) inside the stop band, t1 and r1 are
complex and k1 is imaginary. In case (1), multiplication
of the right hand side of equation (35) with the complex
conjugate of the denominator, and omitting the irrelevant
common real prefactors, yields

Xi =
(
1 − r2i

)
cos(k′iN), (37)

Yi =
(
1 + r2i

)
sin(k′iN). (38)

The derivatives with respect to λ′ read

dXi

dλ′
= −2ri cos(k′iN)

dri
dλ′

− (1 − r2i )N sin(k′iN)
dk′i
dλ′

, (39)

dYi

dλ′
= 2ri sin(k′iN)

dri
dλ′

+ (1 + r2i )N cos(k′iN)
dk′i
dλ′

· (40)

The derivatives dk′i/dλ
′ and dri/dλ′ are given in the Ap-

pendix (Eqs. (A.3) and (A.8)). In case (2), we write the
complex parameters in the form k′1 = ik̃′1, r1 = ra + irb
(ra, rb real) and t1 = 1− iq̃1. Again omitting common real
prefactors, we obtain

X1 = AC −BD and Y1 = AD +BC, (41)

with

A = 1 + ra + q̃1rb, (42)
B = rb − q̃1(1 + ra), (43)

C = 1 − (r2a − r2b
)
exp

(
−2k̃′1N

)
, (44)

D = 2rarb exp
(
−2k̃′1N

)
. (45)

The derivatives needed for the calculation of the DOS ac-
cording to equation (36) now read

dX1

dλ′
=

dA
dλ′

C +A
dC
dλ′

− dB
dλ′

D −B
dD
dλ′

(46)

(and similarly for dY1/dλ′). The derivatives of A,B,C,D
with respect to λ′ are listed in the Appendix, equa-
tions (A.16–A.19).

In the top of Figure 3, we show the relative DOS
ρ1/ρiso of the wave with polarization ê1, calculated for
relative dielectric anisotropy α = 0.1, and three differ-
ent film thicknesses N |p|, as indicated in the figure; also
plotted is the relative DOS ρ

(∞)
1 /ρiso of a thick film, cal-

culated according to equation (27). The DOS of the thick
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Fig. 3. Relative DOS ρ1/ρiso and reflectivity R1 of the wave
with polarization �̂1, using α = 0.1. Solid curves calculated
for the film thicknesses N |p| indicated on the right; dashed
curves calculated for infinite thickness (i.e., neglecting multiple
reflections).

film diverges at the band edges, and inside the stop band,
it is exactly zero. In case of a thin film, the DOS shows
Fabry-Perot-like oscillations, growing in amplitude on ap-
proaching the stop band. In contrast to ρ

(∞)
1 /ρiso, it re-

mains finite inside the stop band, because the superposi-
tion of the multiple-‘reflected’ evanescent waves no longer
is completely evanescent, but contains a propagating com-
ponent. As to be expected, on increasing the film thickness
the resonance peaks become more and more pronounced
and closely spaced. The relative DOS ρ2/ρiso (not plot-
ted in Fig. 3) is very close to unity, showing only tiny
oscillations. Also shown in Figure 3 are the reflectivity
curves for light with polarization ê1, calculated with the
same parameters α, N as used for the relative DOS. The
Fabry-Perot fringes are oscillating around the reflectivity
curve of the thick film (dashed line), in a similar fashion
as the oscillations found for the DOS. The maxima of the
reflectivity almost coincide with minima of the DOS (this
matching improves on increasing the film thickness).

4 Intensity of the emitted light

After calculating the DOS of the two normal modes, the
second step in the calculation of the relative intensities

a

ξ

ζ

ηψ

d̂

b

θφ
η

ξ

d̂

ζ

cosψ = dη /dξη

sinψ  = dξ /dξη

dη  = cosθ
dζξ = sinθ
dζ  = sinθ sinφ
dξ   = sinθ cosφ

Fig. 4. Angles used to describe the orientation of the transition
dipole moment 	̂.

Ii (Eq. (5)) is the determination of the average 〈|di|2〉 of
the squared projections of the transition dipole moment d̂
on the polarization eigenstates êi. For the calculation of
the factors di, only the projection dξη on the {ξ̂, η̂} –
plane is relevant. We characterize its orientation by the
angle ψ with respect to the local director, i.e. the η̂ – axis
(Fig. 4a):

dξη = dξη(sinψ ξ̂ + cosψ η̂). (47)

Using the expressions for the polarization eigenstates
(Eq. (15)), the factors |di|2 then read in general

|di|2 = d2
ξη

1 + (f2
i − 1) cos2 ψ
1 + f2

i

, (48)

except for d1 at wavelengths inside the stop band; here, Ê1

is linearly polarized, due to the imaginary ellipticity f1.
Writing f1 = if̃1, we get

|d1|2 = d2
ξη

1 +
(
f̃2
1 − 1

)
cos2 ψ

1 + f̃2
1

− 2f̃1
1 + f̃2

1

d2
ξη sinψ cosψ. (49)

To obtain the change in emission of the dye-doped choles-
teric film, the factors |di|2 have to be averaged according
to the orientational distribution of the transition dipole
moment. In analogy to the order parameter S used to
quantify the molecular orientational order in nematic liq-
uid crystals [1], we characterize the degree of order of the
transition dipole moment by an order parameter Sd. It is
defined as the average

Sd =
3
2
〈
cos2 θ

〉− 1
2
, (50)

where θ is the angle between the local director (η̂ – di-
rection) and the transition dipole moment (Fig. 4b). The
maximum possible value Sd = 1 corresponds to the (hy-
pothetical) case of perfect alignment of the transmission
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Fig. 5. The averages 〈|di|2〉 as a function of the reduced wave-
length, for α = 0.1; curves are calculated using Sd – values
ranging from −0.5 to 1 in steps of 0.25. Curves corresponding
to Sd = −0.5 and Sd = 1 are marked accordingly. The grey
area marks the stop band.

dipole moment parallel to the local director n̂. Sd = 0 cor-
responds to an isotropic orientational distribution. Values
Sd < 0 correspond to a preferred orientation perpendicu-
lar to n̂ (the minimum value Sd = −0.5 corresponding to
an isotropic distribution restricted on the plane perpendic-
ular to n̂). To determine the averaged factor 〈di〉 in terms
of the order parameter Sd, we start with an arbitrarily ori-
ented dipole moment d̂, characterized by angles θ and φ
as indicated in Figure 4b. The projection of the transition
dipole moment on the {ξ̂, η̂}-plane then is

dξη =
(
d2

ξ + d2
η

)1/2
=
[(

1 − cos2 θ
)
cos2 φ+ cos2 θ

]1/2

=
(
cos2 θ sin2 φ+ cos2 φ

)1/2
. (51)

Using the identity

cosψ = cos θ/dξη, (52)

we now can perform the orientational average of the fac-
tors |di|2. We first consider the case of real fi (Eq. (48)),

〈|di|2
〉

=
1

1 + f2
i

〈〈
d2

ξη

[
1 + (f2

i − 1) cos2 ψ
] 〉

φ

〉
θ
, (53)

where the brackets 〈. . . 〉φ, 〈. . . 〉θ indicate the average over
φ and θ, respectively. To perform the average, we insert
equations (51) and (52), and use 〈cos2 φ〉φ = 〈sin2 φ〉φ = 1

2
(the orientational distribution is assumed to have rota-
tional symmetry along the director). We obtain

〈|di|2〉 =
1

1 + f2
i

[(
f2

i − 1
2

)
〈cos2 θ〉θ +

1
2

]
· (54)

Employing the definition of the order parameter Sd

(Eq. (50)), we finally get the result

〈|di|2〉 =
2
3
f2

i − 1
2

f2
i + 1

Sd +
1
3
· (55)

Substituting f1 with f̃1, this also holds for d1 at wave-
lengths inside the stop band, because the additional term
occurring in equation (49) vanishes when performing the
average: it is proportional to d2

ξη sinψ cosψ, and

〈d2
ξη sinψ cosψ〉 = 〈dηdξ〉

= 〈〈cos θ sin θ cosφ〉φ〉θ
= 0. (56)

Here we used the trigonometric relations listed in Figure 4
and the relation 〈cosφ〉φ = 0 (due to the rotational sym-
metry of the orientational distribution). Assuming Sd = 0
(isotropic orientational distribution), equation (55) gives
the average

〈∣∣d2
iso

∣∣〉
iso

=
1
3

(57)

needed for the calculation of the relative intensities ac-
cording to equation (5). In Figure 5, the averages 〈|di|2〉
are plotted for several values of the order parameter Sd.
The factor 〈|d2|2〉 is a very smooth function of λ′. For not
too small wavelengths it is almost constant, due to the
almost constant polarization ê2. Higher values of Sd re-
sult in higher values of the factor 〈|d2|2〉, because then the
orientational distribution of the transition dipole moment
is more and more concentrated along the local director,
and thus its projection dξη on the plane of the almost cir-
cular polarization ê2 is on the average higher. Near the
stop band, there is a strong variation in 〈|d1|2〉, due to
the strong changes in the polarization ê1. Near the long-
wavelength band edge, there is a major polarization com-
ponent along the local director (diverging ellipticity f1),
resulting in high 〈|d1|2〉-values for high order parameters
Sd. Near the short-wavelength edge, ê1 is essentially per-
pendicular to the local director (f1 ≈ 0), thus a high order
parameter Sd results in a low value of 〈|d1|2〉.

Now we have all ingredients to calculate the relative
fluorescence intensities I1 and I2 (Eq. (5)) as a function of
the reduced emission wavelength in terms of the relative
dielectric anisotropy α, the film thickness and the order
parameter Sd of the dye’s transition dipole moment.

In Figure 6, the relative intensities of a thick cholesteric
slab (neglecting multiple reflections) are plotted for
several values of the order parameter Sd, using α = 0.1.
Inside the stop band, I1 vanishes, because ρ1 = 0. If for
Sd the extremal value −0.5 is chosen, I1 diverges at the
short-wavelength edge of the stop band, while at the other
edge it remains a continuous function: there, the transi-
tion dipole moment is oriented completely in the plane
perpendicular to the local director, so it can’t emit into
the resonant mode (whose polarization ê1 is parallel to
the local director). Increasing the order parameter Sd, the
divergence at the short-wavelength edge of the stop band
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Fig. 6. Relative intensity contributions I1 (top) and I2 (bot-
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band, I1 = 0 for all values of Sd (dashed line).

gets less pronounced, and at the long-wavelength edge, a
second divergence emerges. For Sd = 1, i.e. perfect align-
ment of the transition dipole moment along the local di-
rector, the short-wavelength divergence vanishes, because
at this wavelength now the polarization of the resonant
mode is oriented perpendicular to the transition dipole
moments. For a given order parameter Sd, ρ2, as well as
〈|d2|2〉, are almost constant, resulting in an almost con-
stant intensity I2.

Now we consider thin films, taking into account multi-
ple reflections. In Figure 7, the relative intensity I1 is plot-
ted for various film thicknesses and order parameters Sd.
Instead of the two divergences found for the thick CLC
slab, now there are two dominant intensity peaks near the
band edges. Changing the order parameter, their relative
weight changes in a similar fashion as found for the diver-
gences in case of the thick CLC slab: on increasing Sd, the
long-wavelength resonance becomes more and more dom-
inant. Increasing the film thickness N results in improved
resonator quality of the film and thus in sharper intensity
peaks.

5 Polarization of the emitted light

Widely used to characterize the polarization of the fluo-
rescence light is the dissymmetry factor ge,

ge = 2
IL − IR
IL + IR

, (58)

where IL and IR denote the left- and righthanded circu-
larly polarized intensity contributions. Possible values of
ge range from −2 to +2. To calculate the dissymmetry
factor, we have to take into account that on passing the
interface, the waves E1, E2 change their polarizations.
Outside the film they have polarizations êiso

i (Eq. (21)).
For not too small wavelengths (λ′ > α), these are almost
circular polarizations, so it is a good approximation to use
the intensities I1, I2 instead of IL, IR for the calculation
of the dissymmetry factor ge. For an exact calculation of
the dissymmetry factor, we decompose the two intensity
contributions I1, I2 (Eq. (5)) in their respective right- and
lefthanded CP components by calculating the scalar prod-
ucts of their respective field amplitudes

Eout
i = êiso

i

√
Ii (59)

and the complex polarization vectors

ê+ =
1√
2

(x̂ + iŷ) and ê− =
1√
2

(x̂ − iŷ) (60)

characterizing the two circular polarizations with opposite
sense of rotation. For the amplitudes E+

i , E−
i of the two

circularly polarized components we obtain

E±
i =

qi ± fi√|qi|2 + |fi|2
√
Ii/2. (61)

Thus the two components have intensities

I±i =
1
2

|qi ± fi|2
|qi|2 + |fi|2 Ii. (62)

Using the sums IL = I+
1 + I+

2 and IR = I−1 + I−2 , we
can now calculate the dissymmetry factor ge according to
equation (58). In Figure 8, the result for a thick cholesteric
slab (neglecting multiple reflections) is plotted for various
order parameters Sd, using α = 0.1. We assume a left-
handed CLC (ge changes its sign for a helix with opposite
handedness). Except for the extreme values Sd = −0.5
and Sd = 1, there are discontinuities at both band edges:
the polarization shows an abrupt reversal of its sense of
rotation. Inside the stop band, the curves coincide (indi-
cated by the dashed line), because in this wavelength re-
gion emission is restricted on waves with polarization ê2;
here, the emission is almost completely circularly polar-
ized (for α = 0.1, ge ≈ −1.9975). Outside the stop band,
ge approaches (almost) 2, because here emission is domi-
nated by the mode with polarization ê1. In Figure 9, the
dissymmetry factor is plotted for various film thicknesses
and order parameters Sd. The discontinuities found for
the thick CLC slab are no longer present, and oscillations
occur due to the oscillations of the intensity contribution
I1. Increasing the film thickness, the dissymmetry factor
more and more approaches its extremal value −2 inside
the stop band, because emission gets more and more re-
stricted on the mode with polarization ê2.

6 Emission of a nematic film
In the experimental section, we will present a supplemen-
tary measurement with a dye-doped nematic film. In the
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following, we will briefly discuss how to derive the order
parameter Sd from the ratio

r = I‖/I⊥ (63)

of the emission contributions I‖, I⊥ polarized parallel and
perpendicular to the nematic director n̂. Again, we as-

sume homogeneous and orientation-independent excita-
tion of the dye molecules. Considering light propagation
parallel to the film normal in a nematic film with planar
alignment, the two independent light modes are linear po-
larized parallel and perpendicular to the director n̂. We
neglect multiple reflections at the film boundaries. Again
we assume that each excited dye molecule emits into one
of the two normal modes, and the respective emission rate
is proportional to the projection of the transition dipole
moment d on the respective polarization (ê‖ or ê⊥), and
to the DOS (ρ‖ or ρ⊥) associated to the respective mode.
The dispersion relations k‖,⊥ = ne,o/(cω) of the two nor-
mal modes give densities of states ρ‖,⊥ ∼ ne,o. Again per-
forming the orientational average of the transition dipole
moment, we obtain for the emission intensities polarized
parallel and perpendicular to the director

I‖ ∼ ne(2Sd + 1), (64)

I⊥ ∼ no(1 − Sd). (65)

Defining

r′ = rno/ne, (66)

and using equations (64) and (65), we finally obtain

Sd =
r′ − 1
r′ + 2

· (67)
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Fig. 10. Dissymmetry factor ge at small wavelengths: accord-
ing to the theory of Katsis et al. [13] (solid lines), and according
to our theory (dashed lines), using α = 0.05 and Sd = 0.5.
(a): curves are calculated for a film with relative thickness
N = 5; (b): calculated for film with thickness D, fixed emis-
sion wavelength λ, assuming Dn̄/λ = 20; variation of λ′ cor-
responds to a variation of the pitch. Reflections at the film
surface are neglected.

7 Limitations of the theory at short
wavelengths

The dissymmetry factor for emission at small wavelengths
(λ′ < α) has been studied both experimentally and the-
oretically by Chen’s group [11,13]. According to their

treatment, for wavelengths λ′ � p, the emission of the
dye molecules is essentially governed by the local quasi-
nematic order, rather than the photonic properties of the
film as a whole. For each quasi-nematic plane of the film,
this results in incoherent linearly polarized emission con-
tributions like in an ordinary nematic medium (Eqs. (64)
and (65), again assuming homogeneous excitation of the
dye molecules). For both emission contributions, the CLC
layer between the emitting plane and the film surface
acts as a polarizing device. The polarization of the light
finally leaving the film depends on the distance of the
emitting plane from the surface. Integration of the l-cp
and r-cp emission contributions of all the emitting quasi-
nematic sublayers gives the total l-cp and r-cp emission
contributions of the film. The dissymmetry factor then
shows undulations (solid lines in Fig. 10), their ampli-
tude decreasing with increasing film thickness. While our
theory qualitatively matches the Chen result, it doesn’t
reproduce the undulations in the dissymmetry factor due
to the finite film thickness (in the framework of our
theory, the dissymmetry factor is virtually independent
of the film thickness at small wavelengths).

For small emission wavelengths λ′ < α, the model of
Chen et al. has been found to be in excellent agreement
with experimental results [13]. For wavelengths near or in-
side the stop band, their approach must fail, as it doesn’t
account for the drastic changes of the DOS. However, for
a wide wavelength range we find quite good qualitative
agreement of the dissymmetry factor obtained by the two
theoretical approaches (Fig. 11, ge calculated for a thick
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Fig. 11. Dissymmetry factor ge of a thick cholesteric slab,
calculated according to the theory of Katsis et al. [13] (solid
line), and according to our theory (dashed line), using α = 0.1
and Sd = 0.5.

CLC slab). Striking deviations occur close to the stop
band, where the Chen theory doesn’t reproduce the steep
approach to the extremal value |ge| = 2.

8 Experiment

To test our theory, we analyzed the fluorescence of two
cholesteric samples, both of them being a mixture of
a chiral and an achiral compound (Fig. 12). Sample 1
is a mixture of the nematic p-pentylphenyl-2 chloro-4-
(pentylbenzoyloxy)-benzoate (69.2 wt.%) and the cho-
lesteric cholesteryl nonanoate (30.8%), sample 2 is a mix-
ture of the two diacrylates shown in Figure 2 (achiral
component 95.94 wt.%, chiral component 4.06 wt.%).
Both samples are doped with the laser dye 4-(dicy-
anomethylene)-2-methyl-6-(4-dimethylamino styryl)-4H-
pyran (DCM, also shown in Fig. 12), which has a high
quantum yield and shows excellent solubility in various
liquid crystals. The dye contents of sample 1 and sample 2
are 0.37 and 0.21 weight-%, respectively. Sample films
were prepared by filling ready-made ITO cells with buffed
substrates (spacing ≈ 22 µm). They provide a well-defined
director orientation at the film surfaces, thus enforcing
an integer number of half-turns of the cholesteric helix.
Sample 1 was chosen because of its high birefringence
and the weak temperature sensitivity of the cholesteric
pitch. Macroscopic uniform alignment was supported by
annealing the film at 60 ◦C for several hours. Sample 2
is less well suited to prepare well ordered films, because
annealing at elevated temperatures results in a chemical
crosslinking reaction, which is accompanied with a change
in density of the material and the formation of microscopic
heterogeneities [8]. We have chosen sample 2 because of
the small amount of the chiral component required to
form a CLC showing selective reflection in the visible re-
gion. Thus, the cholesteric mixture, and the nematic phase
formed by the achiral component alone, can be expected
to have very similar nematic order parameters and refrac-
tive indices no, ne, and both solvents provide an almost
identical chemical environment for the dissolved DCM-
molecules. Thus, a correct analysis of the fluorescence of
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the dye-doped cholesteric and nematic diacrylate should
yield quite similar values of the order parameter Sd.

Due to small tilts of the substrates, usually there are
small variations in the film thickness, resulting at a given
surface orientation of the director in a variation of the
local pitch; thus, if too large a film area is used for the
excitation of fluorescence, the fine structure of the fluores-
cence spectrum resulting from the oscillations of the DOS
can’t be resolved properly. Therefore, we used for excita-
tion a focused laser beam. Experiments were performed at
room temperature, using the experimental setup sketched
in Figure 13. Fluorescence is excited with a frequency-
doubled cw Nd:YAG laser (COHERENT 532-200). The
beam (λ = 532 nm) is strongly attenuated by two almost
crossed polarizers, and then is converted into a circular po-
larized beam by means of a quarter-wavelength retarder.
Finally, it passes a collecting lense (f = 40 mm, result-
ing in a focal spot with diameter ≈ 20 µm) and hits the
sample film at an angle of incidence of 45◦. The polar-
ization’s sense of rotation is chosen to be opposite to the
handedness of sample’s cholesteric twist; thus, inside the
sample film, the excitation beam essentially resembles
the normal mode with polarization ê2, which is virtually
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Fig. 14. Circularly polarized intensity contributions reaching
the detector (assuming a sample with left-handed cholesteric
helix, and nglass = 1.5).

unaffected by the cholesteric medium. Due to the (almost)
circular polarization of the beam inside the sample, the
excitation probability is almost independent of the ori-
entation of the individual dye molecules (we neglect the
minor orientation dependence which is produced by the
anisotropy of the local field, due to the optical anisotropy
of the nematic planes).

The fluorescence light is parallelized by an achromatic
lens, and passes a ‘superachromatic’ quarter-wavelength
retarder (B. Halle Nachfolger Ltd) and a prism polarizer
in a rotatable mount. Finally, it is coupled via fiber op-
tics into a spectrometer (OceanOptics S2000). Reflection
and transmission measurements were performed with a
white light source providing an almost parallel incident
beam (divergence ≈ 1◦) with a beam diameter 1.5 mm in
the sample plane. Reflection measurements at normal inci-
dence were accomplished with the help of a beam splitter
cube positioned in the path of the incident beam. The two
spectrometer channels for fluorescence and reflection mea-
surements have resolutions of 0.5 nm and 1.5 nm, respec-
tively. The spectra were corrected for the wavelength- and
polarization-dependent sensitivity of the spectrometer.

For a correct quantitative evaluation of the cp intensity
contributions reaching the detector, we have to consider
the effects due to reflections at the glass-air interfaces of
the sample cell. Small parts of the two cp emission com-
ponents are reflected at the glass-air interface, thereby re-
versing the handedness of their respective polarizations.
This results in a mixing of the l-cp and r-cp emission
components IL, IR. Assuming a sample with left-handed
cholesteric helix, a back-reflected r-cp beam passes the
CLC film virtually unimpeded, while a l-cp beam is par-
tially reflected by the CLC film. In contrast to reflection at
the glass-air interface, the polarization’s handedness is not
reversed by reflection at the CLC-film [1,2]. The contribu-
tions to the detected cp intensities IL,tot, IR,tot are shown
in Figure 14. For simplicity, we only consider corrections
of the first order in the reflectivity R of the glass-air in-
terface (for nglass = 1.5, R = 0.04). The transmittance
and reflectivity of the CLC film for l-cp light are denoted
in the figure by TL and RL. For the total l-cp and r-cp
intensity contributions finally leaving the sample cell, we
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Top: reflectivity (a) and l-cp transmission (b); dots and solid
curves represent experimental results and fitted theoretical
curves, respectively. Bottom: fluorescence spectra: l-cp emis-
sion (c) and r-cp emission (d); and emission in the isotropic
phase (e).

obtain (using TL +RL = 1)

IL,tot = 0.96 × (IL + 0.04IR), (68)
IR,tot = 0.96 × (0.04IL + IR). (69)

The sum of these two intensities gives

IL,tot + IR,tot = 0.9984× (IL + IR), (70)

so the error due to neglecting higher-order reflections is
negligible (0.16%).

9 Experimental results and discussion

In Figures 15a and b, the reflection and transmission
curves for sample 1 are shown. The almost perfect cho-
lesteric order within the illuminated spot results in a
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Fig. 16. Sample 1: ratio of l-cp and r-cp emis-
sion component of the fluorescence (top), and
dissymmetry factor ge (bottom). Experimental
results and theoretical curves are represented
as dots and solid lines, respectively. Insets in
the top figure show the peaks near the band
edges.

clear-cut stop band and pronounced interference fringes.
The drop in transmittance at short wavelengths is due
to the absorption of the dye. The reflectivity curve is
excellently matched by the fitted theoretical curve [2]
(convoluted with the resolution of the spectrometer) also
plotted in Figure 15a. The parameters thus derived are
|p|n̄ = 591.4 nm, α = 0.0746, andN = 58.5. In Figures 15c
and d, we present the l-cp and r-cp emission components
of the fluorescence spectrum (obtained at the same sample
spot we used for the reflection- and transmission measure-
ment). The CLC under investigation forms a left-handed
cholesteric helix, and – as to be expected – only the l-cp
emission component is strongly affected by the cholesteric
medium: almost zero emission inside the selective stop
band, strongly enhanced emission at the long-wavelength
band edge, and strong oscillations near the band edges.
The r-cp emission component essentially resembles the flu-
orescence spectrum obtained in the isotropic phase of the
CLC (Fig. 15e).

The ratio IL/IR of the l-cp and r-cp emission compo-
nent, and the dissymmetry factor ge are shown in Fig-
ure 16. Although both quantities contain equivalent in-
formation, we show both of them: the ratio IL/IR gives a
qualitative impression of the DOS of the normal mode E1,
and the dissymmetry factor ge illustrates the drastic wave-
length dependence of the polarization of the emitted light.
Also included in the figure as solid lines are the respec-
tive curves calculated according to our theory (again we
have taken into account the spectrometer’s resolution);
a best fit of the data is obtained for the cholesteric pa-
rameters |p|n̄ = 591.46 nm, α = 0.0752, and N = 59
(in excellent agreement with the results derived from the
reflection curve), and order parameter Sd = 0.42, indi-
cating a rather strong alignment of the dye’s transition
dipole moment for emission parallel to the director. Al-
though the assumption of a constant order parameter Sd

can’t be expected to be strictly true, the overall agree-
ment of the experimental and theoretical results is ex-
cellent. There are some deviations: the measured inten-
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Fig. 17. Fluorescence of sample 2: r-cp (a) and l-cp (b) emis-
sion contributions.

sity peaks near the band edges are less pronounced than
predicted by theory (see insets in Fig. 16). Our calcula-
tion of the DOS is based on the assumption of a perfect
cholesteric order. However, there might exist static distor-
tions due to defects, and due the inhomogeneous heating
of the sample by the strongly focussed excitation beam.
Besides, there exist long range thermal fluctuations of the
molecular alignment; they disturb the periodicity of the
structure [18,19], give rise to random light scattering and
thus reduce the resonator quality of the CLC film. De-
viations near the short-wavelength edge of the selective
stop band may be partially due to re-absorption of the
emitted light. A small contribution to the observed dis-
crepancies may derive from the fact, that the excitation
of the chromophores is not exactly homogeneous along the
film normal.

In Figure 17, the l-cp and r-cp emission compo-
nents of sample 2 are shown. Since sample 2 forms
a right-handed cholesteric helix, now the r-cp emission
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Fig. 18. Sample 2: ratio of r-cp and l-cp emission component of the fluorescence (top), and dissymmetry factor g (bottom).
Experimental results and theoretical curves are represented as dots and solid lines, respectively. Insets in the top figure show
the peaks near the band edges.

component is strongly affected by the cholesteric medium.
As outlined above, sample 2 isn’t ordered as well as
sample 1, as revealed by the less pronounced emission
peaks (especially the two peaks framing the stop band
are strongly attenuated). The ratio of the r-cp and l-
cp emission contributions, and the dissymmetry factor ge
are shown in Figure 18. Again, there is fair agreement of
our model and the experimental result, with parameters
pn̄ = 578.8 nm, α = 0.090, N = 61.5, and Sd = 0.38. The
Sd – value is very similar to the result obtained for sam-
ple 1. In general one has to expect varying order param-
eters Sd in different cholesteric solvents: the alignment of
the dye molecules depends on the solvent’s chemical con-
stitution and on the nematic order parameter. Addition-
ally, in the case of DCM there is a well-known dependence
of the equilibrium conformation of the DCM molecule on
the solvent, which affects the emission characteristics [20].

For comparison, we studied the fluorescence of a dye-
doped nematic film formed by the achiral compound also
used for sample 2. The two linear polarized emission con-
tributions I‖, I⊥, with polarization parallel and perpen-
dicular to the nematic director, are shown in Figure 19a.
The small ripples of the I‖ – spectrum may be assigned
to oscillations of the DOS due to Fabry-Perot interfer-
ence. The refractive indices no, ne of sample 2 and the
nematic film can be expected to be almost identical. To
determine Sd from the emission ratio I‖/I⊥of the nematic
sample according to equation (67), we need the ratio of
the refractive indices no/ne; it can be calculated from the
parameter α of sample 2 according to

no/ne = [(1 − α)/(1 + α)]1/2, (71)

and we get no/ne = 0.914. Using equation (67), we finally
obtain Sd as a function of emission wavelength (Fig. 19b).
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Fig. 19. Nematic sample: linear polarized emission contribu-
tions (a), and order parameter Sd (b).

The result is almost constant (except near the excitation
wavelength). Within the experimental accuracy, the mean
value Sd ≈ 0.41 is in excellent agreement with the result
derived from the fluorescence of the CLC sample 2, as to
be expected due to the almost identical chemical consti-
tution of the two solvents.

10 Conclusions

In this paper, we have discussed the changes in fluores-
cence of a dye-doped CLC film on transition from the



J. Schmidtke and W. Stille: Fluorescence of a dye-doped cholesteric film 193

isotropic to the cholesteric phase, considering emission
parallel to the cholesteric helix. Assuming a homogeneous
distribution and excitation of the fluorescent molecules in
the film, and neglecting re-absorption of the emitted light,
we have derived a theoretical description of the changes
in the fluorescence intensity and polarization for emission
parallel to the film normal. The salient features of fluores-
cence spectra of dye-doped CLC films – reduced intensity
inside the stop band, enhanced fluorescence at the band
edges, oscillations in the vicinity of the stop band, and a
dominant circularly polarized emission contribution – can
be well understood in the framework of our theory. Agree-
ment of our model with experimental results is excellent;
the values obtained for the model parameters are in agree-
ment with the results of complementary measurements:
For sample 1, the values of the optical and structural pa-
rameters (n̄p, α, N) are consistent with those obtained by
a reflectivity measurement, and for sample 2, the value of
the order parameter Sd is in agreement with the value ob-
tained using a nematic solvent with very similar chemical
constitution.

From our results, several conclusions can be drawn
concerning the observed laser emission of dye-doped CLC
films. The sharp peaks of the DOS in the vicinity of the
stop band mark the resonance frequencies which may be
available for laser emission. The two sequences of reso-
nant peaks near the two band edges are roughly symmet-
ric (cf. Fig. 3), the resonances near the short-wavelength
edge being slightly more pronounced. Thus, apparently
both band edges are equally well suited for laser emission
(neglecting the fact, that in general population inversion
is more easily achieved at longer wavelengths). However,
one has to take into account the alignment of the transi-
tion dipole moment for emission, d̂, of the dye molecules
with respect to the polarization ê1 of the resonant mode.
The average 〈|ê∗

1 · d̂|2〉 (Fig. 5) of course not only gov-
erns the effect of the order parameter Sd on spontaneous
emission, but on stimulated emission as well: for positive
order parameters Sd, stimulated emission preferentially
takes place at the resonance frequencies near the long-
wavelength edge of the stop band, and for negative Sd, the
resonances near the long-wavelength edge are preferred.
Indeed, both the dye-doped CLC sample 1, as well as a
highly crosslinked cholesteric polymer network formed by
the diacrylate monomers we used for sample 2, show laser
emission at the long-wavelength edge of the stop band [8],
as to be expected for a system with positive order param-
eter Sd.

Thanks are due to the Fonds der Chemischen Industrie and
the Deutsche Forschungsgemeinschaft (SFB 428) for financial
support, as well as to BASF AG (Ludwigshafen) for providing
the diacrylate monomers.

Appendix

Here we list the derivatives of basic optical quantities
which are needed for the calculation of the DOS. For waves

with polarization ê2 at all wavelengths, and for waves with
polarization ê1 outside the stop band, they read

dλ′

dω
= −2πc

n̄p
ω−2 = − n̄p

2πc
λ′2, (A.1)

dm′
1,2

dλ′
=
(

1 ∓ 2√
4λ′2 + α2

)
λ′

m′
1,2

, (A.2)

dki

dλ′
= 2π

(
1
λ′

dm′
i

dλ′
− m′

i

λ′2

)
, (A.3)

∂fi

∂λ′
=
(
m′

i −
1 − α

m′
i

)
1

2λ′2
− 1

2m′
i

, (A.4)

∂fi

∂m′
i
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(
λ′ − 1 − α

λ′

)
1

2m′2
i

− 1
2λ′

, (A.5)

dfi

dλ′
=
∂fi

∂λ′
+

∂fi

∂m′
i

dm′
i

dλ′
, (A.6)

dqi
dλ′

= fi + λ′
dfi

dλ′
+

dm′
i

dλ′
, (A.7)

dri
dλ′

=
2

(1 + qi)2
dqi
dλ′

· (A.8)

For the calculation of the DOS of the wave with polar-
ization ê1 inside the stop band, we write the now imag-
inary quantities k′1, m

′
1, f1 and q1 in the form k′1 = ik̃′1,

m′
1 = im̃′

1, f1 = if̃1, q1 = iq̃1. The derivatives read

dm̃′
1

dλ′
= −1 +

2√
4λ′2 + α2

λ′

m̃′
1

, (A.9)

∂f̃1
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1
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, (A.10)
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dλ′
, (A.12)

dq̃1
dλ′

= f̃1 + λ′
df̃1
dλ′

+
dm̃′

1

dλ′
· (A.13)

Inside the stop band, the derivatives of the real and imag-
inary part of the reflection coefficient r1 = ra + irb read

dra
dλ′

=
4

(1 + q̃21)2
dq̃1
dλ′

, (A.14)

drb
dλ′

=
2(1 − q̃21)
(1 + q̃21)2

dq̃1
dλ′

· (A.15)
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The derivatives of the factors A,B,C and D (Eqs. (42–
45)) read

dA
dλ′

=
dra
dλ′

+
dq̃1
dλ′

rb + q̃1
drb
dλ′

, (A.16)

dB
dλ′

=
drb
dλ′

− (1 + ra)
dq̃1
dλ′

− q̃1
dra
dλ′

, (A.17)

dC
dλ′

=

[
rb

drb
dλ′

− ra
dra
dλ′

+N(r2a − r2b)
dk̃′1
dλ′

]

× 2 exp
(
−2k̃′1N

)
, (A.18)

dD
dλ′

=

(
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dλ′
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−N
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dλ′

)

× 2 exp
(
−2k̃′1N

)
. (A.19)
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